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CONTINUUM AND LATTICE THEORIES OF INFLUENCE OF
ELECTROMECHANICAL COUPLING ON CAPACITANCE

OF THIN DIELECTRIC FILMS

R. D. MINDLIN

Department of Civil Engineering, Columbia University

Abstract-In this paper, it is suggested that an anomaly, observed by C. A. Mead in measurements of the capac­
itance of thin dielectric films, may be due to an electromechanical effect not accounted for in the classical, con­
tinuum theory of piezoelectricity. A solution of equations that include the additional effect is shown to be capable
of accommodating the experimental data. It is demonstrated that the augmented equations, rather than the
classical ones, are a continuum approximation to the equations of a lattice of shell-model atoms. Analogous
equilibrium s.olutions of the lattice and continuum equations are almost identical.

INTRODUCflON

ACCORDING to the classical theory of electrostatics, the capacitance of a metal-dielectric­
metal sandwich is inversely proportional to the thickness of the dielectric, so that a graph
of inverse capacitance vs. thickness is a straight line through the origin. In a series of
experiments with a variety of thin, dielectric films, Mead [1,2, 3] found a different result.
His experimental data fall on straight lines which, if extended to zero thickness, have
positive intercepts of inverse capacitance, as illustrated in Fig. 1. Initially [1], Mead sug­
gested that the anomaly might be due to penetration of the electric field into the electrodes;
but subsequently [3, 4] he abandoned that view, although it has been supported by Ku
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FIG. l. Capacitance anomaly discovered by Mead [I].
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and Ullman [5]. One purpose of the present paper is to show that a linear, electromechanical
interaction, not accounted for in the classical, continuum theory of piezoelectricity, can
produce an apparent anomaly of the same character.

The equations of classical piezoelectricity are based, in part, on the assumption that the
stored energy ofdeformation and polarization is a function of only the strain and polariza­
tion. If the functional dependence is extended to include the polarization gradient, there
can be an additional electromechanical interaction represented, in the energy, by a product
of strain and polarization gradient. Since the material coefficient of such a product is a
tensor of even rank, the term survives even for centrosymmetric materials-in which there
is no classical piezoelectric effect. The extended equations accommodate a surface phenom­
enon, with a spatial exponential decay, which can become important when a dimension of
the dielectric solid is small. In the first part ofthis paper, a solution ofthe extended equations,
for a boundary value problem representative of Mead's experiments, is described and it is
shown that the surface effect can contribute to an apparent anomaly of the type found by
Mead. The appearance of the surface effect, in the solution, depends on a phenomenological
constant introduced into a boundary condition to account for the influence of the properties
of the metal and the metal-dielectric interface on the polarization of the dielectric at the
interface.

In the second part of the paper, the same problem is treated from the point of view of a
one-dimensional lattice theory, of the Cochran [6] type, based on the Dick-Overhauser [7J
shell-model of the atom: a core, comprising the nucleus and inner electrons, surrounded
by a shell of outer electrons. In the lattice, there are intra-atomic core-shell interactions
and interatomic cor~ore, core-shell and shell-shell interactions. It is shown that the
equations of the lattice have, as a continuum approximation, not the equations of classical
piezoelectricity, but the extended equations including the contribution of the polarization
gradient to the stored energy. The additional electromechanical and surface effects stem
primarily from the shell-shell interaction. The solution of the difference equations of the
lattice, analogous to the boundary value problem solved in the first part, yields a relation
between capacitance and thickness ofexactly the same form as that found in the continuum
solution. The only difference in detail is in the magnitude of a length parameter character­
istic of the material; and even this difference effectively disappears ifthe length parameter is
at least as large as the distance between nearest neighbor atoms. The length parameter is the
magnitude of the reciprocal wave number, at zero frequency, of the imaginary branch of
the dispersion relation for longitudinal waves.

CONTINUUM THEORY

The linear equations of an elastic, dielectric continuum, including the contribution of
the polarization gradient to the stored energy, have been derived elsewhere [8] by means of
a simple extension of a linear version of Toupin's [9] variational principle for the classical
equations of piezoelectricity. For the special case of equilibrium of one-dimensional fields
in a centrosymmetric cubic or isotropic material, in the absence of extrinsic fields, the field
equations were shown to reduce to [8]

C l1 02U+d llo2p = 0,

dl102u+bllo2P-allP-otp = 0,

- Bo02 tp +oP = 0,

0)
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where 0 = djdx, u and P are the x-components of the mechanical displacement and elec­
tronic polarization and qJ is the potential of the Maxwell, electric self-field E:

E = -oqJ. (2)

(4)

Also, Cl1 is an elastic stiffness, eo is the permittivity of a vacuum and eOall is the reciprocal
dielectric susceptibility (= 1'/ -1). The remaining two constants (b ll and d11 ) are associated
with terms, in the energy density, involving the polarization gradient: !b11 is the coefficient
of a quadratic term, (Op)2, and d11 is the coefficient of a product of polarization gradient
and strain: opou.

If the contribution of the polarization gradient is omitted, b11 and d11 are zero and (1)
reduce to

allP+OqJ 0, (3)

- eoo2qJ +oP = 0.

This is the simplest illustration of the fact that, in the classical theory of piezoelectricity,
there is no electromechanical coupling in centrosymmetric materials. For a dielectric
layer with traction-free surfaces at x = ±h, on which are impressed voltages ± V, the
boundary conditions, according to the classical theory, are

(OU)x=±h = 0,

(qJ)X=±h = ± V;

and the solution of (3), subject to these boundary conditions, is, except for additive con­
stants in u and qJ,

u 0,

P = -eo1'/Vjh,

qJ Vxjh.

(5)

The capacitance (per unit area) is the ratio of the surface charge (per unit area) to the voltage
drop across the layer:

c = (eo°qJ-P)x=+h = 1::0(1+11) = ~
2V 2h 2h'

(6)

where e is the permittivity of the dielectric. These familar results of the classical theory are
illustrated by the dashed lines in Fig. 2 and the straight line through the origin in Fig. 1.

If, again, the contribution of the polarization gradient is omitted, but the dielectric
is noncentrosymmetric, a coupling term, say fllPou, where fll is a piezoelectric constant,
appears in the energy density and the one-dimensional differential equations of the classical
theory are

C1102U+ f110P = 0,

fl1ou+allP+oqJ = 0,

-eoo2qJ+oP = 0.

(7)
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FIG. 2. Distributions of potential and polarization through dielectric layer.

The boundary conditions corresponding to (4) are now

(c 1l 8u+ fllP)F±h = 0,

(<p)x= ±h = ± V;

and the solution is, again except for additive constants in u and <p,

P = -Go'1'Vjh,

<p = Vxjh,

C = GO( I + '1')j2h,

where

(8)

(9)

(10)

Thus, the only alterations introduced by the classical piezoelectric effect are the introduction
of a homogeneous strain and the replacement of the susceptibility '1 by '1'. In view of this,
the classical piezoelectric effect will be omitted in the sequel. It should be noted, however,
that, for both centrosymmetric and noncentrosymmetric materials, the classical equations
admit only two boundary conditions: one mechanical and one electrical.

On the other hand, solutions of (1), as shown previously [8], require an additional
boundary condition-which may be taken as the specification of the surface polarization.
Thus, the augmented equations permit the independent specification of the surface potential
and polarization, whereas the classical equations of piezoelectricity do not. Now, the
polarization at a boundary of the dielectric in a metal--dielectric-metal sandwich will
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depend on the physical properties of the adjacent electrode and metal-dielectric interface;
and these properties are outside the compass of the theory of dielectrics. However, since the
electronic polarization in the metal is zero, it is reasonable to suppose that the surface
polarization in the dielectric will lie between the classical value, given by the second of (5),
and zero. Thus, assuming that the two electrodes and interfaces are the same, their influence
on the surface polarization may be introduced, phenomenologically, by setting the
boundary conditions

(P)x=±h = -ksoI]V/h, Osksl. (11a)

(12)

(llc)

(lIb)

The classical condition is k = I while k = 0 describes continuity of polarization across the
interfaces. We suppose, also, that such mechanical forces, as may be acting across the metal­
dielectric interfaces, have no resultant. This boundary condition is, as shown previously [8J,

(ell iJu+d ll iJP)x=±h = O.

Finally, we suppose that the voltages applied to the dielectric at the interfaces are

(lp)x ±h = ± v.
We have now to solve (1) subject to the boundary conditions (11). Let

u = B 1 cosh(x/l),

P = A 2 +B2 cosh(x/l),

lp = A 3x +B3 sinh(x/l),

where I is a material constant, with the dimension of length, to be determined by the
equations. Upon substituting (12) in (1), we find

A 2 = sol]A 3 , B2 = soB3 /1 = -cllBdd ll>

1= [so(bllc ll dil)/C 11(1 +I]-I)]t.

(13)

(14)

(16)

(l5)

(17)

The requirement of positive definiteness of the energy density makes I real.
As for boundary conditions, (llb) is satisfied i~entically while (l1a) and (llc) become

A 2 +B2 cosh(h/l) = - kSol] V/h,

A 3h+B3 sinh(h/l) = V,

respectively. From (13) and (15),

A 3 = (B3/1'[I)cosh(h/l)+kV/h,

B3 = (l-k)1'[V/[1'[ sinh(h/l)+(h/l)cosh(h/l)].

The remaining constants, A 2 , B1 and B 2 , are obtained easily from (16) and (13). The capac­
itance, ignoring any voltage drop that may occur in the electrodes, is

C = (eo Olp-P)x= ±h = ~ 1+ (k1'[l/h) tanh(h/l)
2V 2h 1+(1'[I/h) tanh(h/l) .

In Fig. 3 is illustrated the relation between normalized inverse capacitance and
normalized thickness, described by (17), for the case k = 0·1, 1'[ = 10. Calculations from
Mead's data, for small k, indicate that I is of the order of a few angstroms. Hence Mead's



504030

1202 R. D. MINDLIN

60

1
I

50
......1

",,"'7
.:'.:/.......
~/

40
[j

';;"1
~/

S:; ~/
N 30 ~I Cl'.....-- '$''l-
'" ~I

~I ;""...
I 1>""c;

20

k= 1

h/l

FIG. 3. Inverse capacitance vs. thickness according to augmented continuum theory; also according to
lattice theory if I is replaced by .A. in both abscissa and ordinate.

data, which do not extend below a thickness of 30 A, would be well to the right of the knee
of the curve and so, even if they did conform to (171 would give the appearance of a linear
relation which, if extended to zero thickness, would have a non-zero intercept of inverse
capacitance. This intercept, according to (17), is

Co I = 21(l k}1Jle. (18)

Ifk = 1, the intercept reduces to zero and, in fact, the whole solution reduces to the classical
one. However, it seems unlikely that the presence of the metal would not influence the
polarization of the dielectric at the metal-dielectric interface.

The variations of polarization and potential across the thickness of the dielectric are
illustrated by the curves in Fig. 2. The absolute value of the polarization is almost uniform
across the major portion of the thickness and slightly less than the uniform polarization
of the classical theory; but then drops sharply, near the interfaces, to boundary values of k
times the classical polarization, as specified. The potential has an almost uniform gradient,
less than the uniform gradient of the classical theory, over most of the thickness, but then
increases sharply on approaching the boundaries.

LATrICE THEORY

We consider a single line of atoms, in a three-dimensional lattice of shell-model atoms,
as illustrated in Fig. 4. Only the intra-atomic interaction between core and shell of an atom
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FIG. 4. Lattice of shell-model atoms.

x =(n+1)a

(19)

(20)

(23)

and the interatomic interactions between nearest neighbors in the line are taken into
account. The displacements of the core and shell of the atom at x = na are designated by Un
and Sn respectively. The force constant of the intra-atomic core-shell interaction is des­
ignated by rx and the force constants of the interatomic core--eore, core-shell and shell­
shell interactions are designated by 13, y and e5, respectively. All four force constants have the
dimensions of force per unit length.

The equation of equilibrium of the nth interior atom is obtained by setting equal to zero
the sum of the forces on its core and shell exerted by the cores and shells of its two nearest
neighbor atoms:

f3(Un+1-Un)+Y(Sn+1-Un)+Y(Un+1-Sn)+e5(Sn+1-Sn)

- f3(un- Un- d- y(un- Sn- d- y(sn - Un- d- e5(sn - Sn- d = 0.

The equilibrium of the shell of the nth interior atom is expressed by

rx(un - sn)+y(un+1-sn)+e5(Sn+1- Sn)

-Y(Sn-Un-1)-e5(Sn-Sn-1)+qEn = 0,

where En is the value, at x = na, of the Maxwell, electric self-field and q is a constant with
the dimension of charge.

The polarization of the nth atom, per unit area of the three-dimensional lattice, is
defined by

Pn = (sn-un)q/a3 (21)

and we also adopt a symbol for the second central difference (divided by a2 ):

A2in = (/n+1 +in-1- 2in)/a2. (22)

Then (19) and (20) may be rewritten as

(13 + 2y + e5)a- 1A2Un+(y + e5)a2q-1 11.. 2Pn = 0,

(y + e5)a 2q-1 A2un+ e5a 5q-2 11.. 2 Pn-(rx+ 2y)a3q- 2Pn+ En = 0.

The lowest order continuum approximation to (23) is obtained by expanding the
difference operator 11.. 2 into an infinite series of derivatives and dropping all but the first
term. Then

(24)
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(25)

(26)

The resulting differential equations have exactly the same form as the first two of (1).
Accordingly, if we set

('11 = (fJ+2y+6)a- l , bll = 6a 5q-Z,

dll = (y+6)a Zq-l, all = (et+2y)a 3q-Z = [;0 1'1- 1
,

the first two of (1) become the lowest order continuum approximations to (23).
As may be seen from (26), the polarization gradient terms (those with coefficients d11

and bll ) in (1) stem from shell-shell and interatomic core-shell interactions, identified
by the force constants 6 and y, respectively. In fact, the form of (1) is preserved if the inter­
atomic core-shell interaction is dropped but the shell-shell interaction is retained. If both
of these interactions are omitted, the continuum approximation reduces to the classical
form given by the first two of (3). Now, whereas the second of (23) is the equation of equi­
librium of the shells in the lattice of shell-model atoms, the second of (3) stems, via a con­
stitutive equation, from Toupin's [9J "equation of intramolecular force balance" based
on his dumbbell model of a particle in an elastic dielectric; and the only material constant
in the continuum equation is here identified as one proportional to the intra-atomic core­
shell force constant, et, in the shell-model. Thus, in the case of the classical theory for centro­
symmetric materials, it is shown that the shell model and the dumbbell model are identical
and the equation of equilibrium ofthe shell is the counterpart ofToupin's equation of intra­
molecular force balance. The addition of the contribution of the polarization gradient to the
stored energy, in the continuum theory, converts the second of (3) to the second of (1)

and extends Toupin's force balance at a point to include force balance in the neighborhood
of a point. That is, balance of both intramolecular and intermolecular forces is accom­
modated. In relation to the lattice, the second of (1) is still a continuum approximation
to the equation of equilibrium of the shell, but with the shell-shell and interatomic core­
shell interactions included in the latter.

We have yet to derive the lattice counterpart of the third of(1) and establish the boundary
conditions. It is illuminating to reach these results from considerations of energy.

The ratio of the potential energy of one line of atoms, of the three-dimensional lattice,
to the volume a3 is

where

and

n

co

c+fn = L (_l)m-lm-lam-lA~fn

m=1

A+fn = (fn+ I - fn)/a,

A~fn = (fn+2- 2fn+l +fn)/az,

A~fn = (fn+3- 3fn+2+ 3fn+l-fn)/a 3,

(27)

(28)

(29)
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i.e. 0+ is the Taylor series expansion of the derivative, a, in terms of forward differences.
Thus, the first term in (27) is the contribution of the energy of the Maxwell self-field. The
remaining terms constitute the contribution of the energy of the short range interactions
between atoms.

As shown by Toupin [9J, the equations of the classical, continuum theory of elastic
dielectrics are derived from the electric enthalpy rather than the energy. An analogous
procedure will be employed here. We define an electric enthalpy by

(30)

Then the equations of equilibrium and the equation of electrostatics are obtained from

where

and

-aff/aun= cllLi
2

u n+d l1 Li
2P" = 0,

- eff/oPn = d l1 A2Un +bll ,12Pn- Co 1",- 1Pn ~ a+({)n = 0,

-off/3cpn = -f.oa_o+<fJII+o_Pn = 0,

.X)

a-In = L m-lam-1A~fM
m~l

A_ = Un-In-dla,

A~ = (fn-2f"-1 +f"_2)/a 2,

,1:" = (J,,-3/n - 1+3/n- 2-1" 3)/a3,

(31)

(32)

(33)

i.e. J_ is the Taylor series expansion of the derivative in terms of backward differences.
It may be seen that the first two of{31) are the same as (23), which have the first two of(1)

as continuum approximations, and the third of (31) has the third oY(l) as its continuum
form.

If the lattice is of finite thickness spanning an odd number of atoms with the end ones
at n = ±N, admissible boundary conditions are the specification of one member of each
of the three products

(34)

where

(35)
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-oYf/O(A+U±N) = CjjA+U±N+djjA+P±N,

- oYf/o(A+P±N) = djjA+u±N+bllA+P±N,

-oYf/O(O+fP±N) = COO+fP±N-P±N'

(36)

The problem analogous to the one solved in the preceding section is to find the solution
of (31) satisfying the boundary conditions

P± N = - kColJ V/h,

fP±N= ±V,

where h = Na. We take

Un = B'j cosh(na/A.),

Pn = A1+B1cosh(na/A.),

fPn = [A~x+B~ sinh(x/A.)]x=na'

and note that o+(na) = 1 and

A2 cosh(na/A.) = 4a- 2 sinh 2(a/2A)cosh(na/A),

0+ sinh(na/A) = r j cosh(na/A.),

0_ cosh(na/A.) = ). - j sinh(na/A.),

0_0+ sinh(na/A.) = A. -2 sinh(na/A.).

Then, substituting (38) in (31), we find

A1 = coIJA~, B1 = CoB~/A = -CllBdd jj ,

sinh(a/2A) = a/21,

(37)

(38)

(39)

(40)

(41)

where I is the same as in (14).
Application of the boundary conditions (37) leads, by the same procedure as in the

preceding section, to

and capacitance

A~ = (B~/IJA.)cosh(h/A.)+kV/h,

B~ = (1- k)1J V/[IJ sinh(h/A.) + (h/,.1.) cosh1h/A.)]

c = ~ 1+(kIJA./h)tanh(h/A.).
2h 1+ ('1A./h) tanh(h/A.)

(42)

(43)

Thus, the entire solution is identical with the continuum one except that the displacement
and polarization have significance only at the atom sites and I is replaced by A. In particular,
the curve in Fig. 3 is applicable to the lattice if I is replaced by Ain both abscissa and ordinate.
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If the material constant A. is greater than the lattice constant a, A. and I, by (41), differ
by less than 4 %and the continuum equations are good approximations to the lattice equa­
tions. The condition I ;::::: A. is all that is left, in the present case of equilibrium, of the require­
ments for the "long wave approximation" to be a good approximation. This statement
stems from an inspection of the dispersion relations for wave solutions of (1) and (31) (after
insertion of the appropriate inertia term, pu or PUn' in the first equation of each set). We
find, for the continuum,

(44)

and, for the lattice,

16;2 sin4(~a) + [1- bllCOP~:J ~ sin2(~a) _pOJ2 = 0, (45)
a 2 cll(I+'1) a 2 Cll

where OJ is the circular frequency and ~ is the wave number. In each case, the dispersion
relation (OJ vs.~) has two branches: one real (acoustic) and one pure imaginary, as shown in
Fig. 5. The slopes of the real branches at long wave length approach the same limit (c 1 Jip)±
so that, as far as propagating waves are concerned, the single restriction to long wave
length is sufficient to make the continuum theory a good approximation. At long wave
lengths, the real branches correspond to low frequencies; and at zero frequency the
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FIG. 5. Real and imaginary branches of dispersion relations for longitudinal waves according to
augmented continuum theory and lattice theory.
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imaginary branches have the same slope (infinite) but different intercepts: with magnitudes
1- I for the continuum and A-I for the lattice. If the body has a boundary at which the
variables associated with the real and imaginary branches couple, amplitudes and spatial
decay rates of the displacement, polarization and potential will be affected by a difference
between I and A. Thus, the quality of the approximation will depend not only on the wave
length but also on a property of the material: A. In the case of a problem of equilibrium,
rather than motion, the real wave length is infinite, so that the sole remaining criterion for a
good approximation is a condition on a material property.

The system of difference equations (31), with or without the inertia term, is sometimes
approximated by retaining only a few early terms of the infinite series expansions, (28)
and (32), for a+ and a_. However, in many cases, as in the present one, analytic solutions
of the equations are much simpler if the full infinite series are used~preserving, at the same
time, the long range electrostatic action in full. Often, the third of (31) does not appear at all :
the dependent variable ({J (or the Maxwell self-field) is eliminated between the second and
third of (31) and only two equations (on the displacement and polarization) are employed.
These are suitable for the calculation of dispersion relations for waves in an infinite lattice,
which is the most frequent application; or for problems of bounded lattices with mixed
("cyclic") boundary conditions: which cannot be attained physically, but are suitable for
calculations of bulk properties. For general boundary conditions, including the free
boundary, the full set of three equations (seven, in three dimensions, since u and Pare
vectors) must be employed if surface effects are to be studied.
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AficTpIlKT-B pa60Te npeAIlOnaraeTClI, 'ITO Ha6nlOAaeMllll aHOMaJIHlI U:. A. M3AOM B H3MepeHHlIX roHKHX

AHeJIeKTpH'IecKHX cnoeB, MOlKeT 6LITb Bbl3BaHa 3neKTPOMeXaHH'IecKHM 3cPclleKTOM, HeYlJ.HTLIBaeMbIM B

KJIaCCH'IecKoil:, CUJIOWHOil: TeopHH IIbe303neKTpH'IecTBa. nOKaJaHO, 'ITO peWCHHe ypaBHcHHD:, 3aKJIIO'laIOUJ;HX

A06aBO'IHblil: 3c1>clJeKT, cornacyeTCli C 3KcnepHMeHTaJIbHLIMH AaHHLIMH. nOKa3aHO TaKlKe, 'ITO ypaBHeHHlI

yCHJIHTeJIll, no cpaBHeHHIO C KJIaCCH'IecKHMH, npaBHHeJIbHee OT06palKaIOT CUJIOWHoe npH6nHlKeHHe

ypaBHeHHD: ceTKH 3JleICTPOHHO! 06ono'lKH aTOMOB. AHaJIOrH'IecKHe peweHHll paBHoBecHli ypaBHeHHD:

ceTKH H ypaBHeHH! CUJIOWHO! CpeAbI llBJIllIOTCli nO'ITH HAeHTHlJ.ecKHMH.


